(8x^3-2x^2+6x-18)+(4x^3-x^2-5x+7)

2 min read Jun 16, 2024
(8x^3-2x^2+6x-18)+(4x^3-x^2-5x+7)

Adding Polynomials: (8x^3-2x^2+6x-18)+(4x^3-x^2-5x+7)

This article will guide you through the process of adding two polynomials: (8x^3-2x^2+6x-18) and (4x^3-x^2-5x+7).

Understanding Polynomials

Polynomials are expressions consisting of variables and coefficients combined using addition, subtraction, and multiplication. They involve non-negative integer exponents.

Adding Polynomials

To add polynomials, we simply combine like terms. Like terms are those with the same variable and exponent.

Step-by-Step Solution

  1. Write the polynomials side-by-side:

    (8x^3 - 2x^2 + 6x - 18) + (4x^3 - x^2 - 5x + 7)

  2. Identify like terms:

    • x^3 terms: 8x^3 + 4x^3
    • x^2 terms: -2x^2 - x^2
    • x terms: 6x - 5x
    • Constant terms: -18 + 7
  3. Combine like terms:

    (8x^3 + 4x^3) + (-2x^2 - x^2) + (6x - 5x) + (-18 + 7)

  4. Simplify:

    12x^3 - 3x^2 + x - 11

Result

The sum of the polynomials (8x^3-2x^2+6x-18) and (4x^3-x^2-5x+7) is 12x^3 - 3x^2 + x - 11.

Related Post